
9 The Minimal Supersymmetric Standard Model:
One-Loop

9.1 Gauge Coupling Unification

g1 ≡
√

5
3
g′ =

√
5
3

e

cos θW
(9.1)

g2 ≡ g =
e

sin θW
(9.2)

g3 ≡ gs (9.3)
αa ≡ g2

a/4π (9.4)

These couplings run:

µd

dµ
ga = − 1

16π2
bag

3
a ⇒ µd

dµ
α−1

a =
ba

2π
(9.5)

in the Standard Model (including the top quark)

bSM
a = (−41/10, 19/6, 7) (9.6)

while in the MSSM

bMSSM
a = (−33/5,−1, 3). (9.7)

In the MSSM with a common threshold MSUSY for the superpartners the
couplings appear to unify at a scale MU ≈ 2× 1016 GeV.

This is intriguing, but one should keep in mind that we are solving
three equations in three unknowns: MU , α(MU ), and MSUSY. So we are
garaunteed a solution. Thus the statement is that it is interesting that the
solution occurs for a reasonable value of MSUSY. Taking into account various
uncertainties [5] one finds solutions in the range:

3 GeV < MSUSY < 100 TeV. (9.8)

There are additional uncertainties due to thresholds at superpartner masses
and MU .

1



Figure 1: Running gauge couplings in the SM and MSSM [1]. In the MSSM
α3(mz) is varied between 0.113 and 0.123, and MSUSY between 250 GeV
and 1 TeV.

9.2 Radiative Electroweak Symmetry Breaking

RG equations for soft masses:

16π2 d

dt
m2

Hu
= 3Xt − 6g2

2|M2|2 −
6
5
g2
1|M1|2, (9.9)

16π2 d

dt
m2

Hd
= 3Xb + Xτ − 6g2

2|M2|2 −
6
5
g2
1|M1|2. (9.10)

16π2 d

dt
m2

Q3
= Xt + Xb −

32
3

g2
3|M3|2 − 6g2

2|M2|2 −
2
15

g2
1|M1|2 (9.11)

16π2 d

dt
m2

u3
= 2Xt −

32
3

g2
3|M3|2 +−32

15
g2
1|M1|2 (9.12)

16π2 d

dt
m2

d3
= 2Xb −

32
3

g2
3|M3|2 −

8
15

g2
1|M1|2 (9.13)

16π2 d

dt
m2

L3
= Xτ − 6g2

2|M2|2 −
3
5
g2
1|M1|2 (9.14)

16π2 d

dt
m2

e3
= 2Xτ −

24
5

g2
1|M1|2. (9.15)

where

Xt = 2|yt|2(m2
Hu

+ m2
Q3

+ m2
u3

) + 2|at|2, (9.16)

Xb = 2|yb|2(m2
Hd

+ m2
Q3

+ m2
d3

) + 2|ab|2, (9.17)

Xτ = 2|yτ |2(m2
Hd

+ m2
L3

+ m2
e3

) + 2|aτ |2. (9.18)
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Note that in running to the IR, squark (mass)2 are driven positive by
|M3|2 terms.

Gauge terms are additive so we can consider them seperately. Keeping
on the |yt|2 terms we have

16π2 d

dt
m2

Hd
= 0 (9.19)

16π2 d

dt

 m2
Hu

m2
u3

m2
Q3

 = 2|yt|2

 3 3 3
2 2 2
1 1 1


 m2

Hu

m2
u3

m2
Q3

 (9.20)

Starting with m2
Hu

, m2
u3

, and m2
Q3

all equal to m2
0 at some high scale,

we see that the masses run to

m2
0

2

 −1
0
1

 (9.21)

So m2
Hu

runs negative. It is usually claimed that this garauntees EWSB,
but as we have seen EWSB may or may not follow depending on the values
of mu and b. It is also usually claimed that this calculation “predicted” a
large top mass, but it really only required that

yt =
√

2 mt

sinβ
(9.22)

was large.

9.3 One-loop correction to the Higgs mass

Recall

mh < | cos 2β|mZ =
g2 + g′2

4
|v2

d − v2
u| (9.23)

The Higgs mass is controlled by the quartic couplings. As we have seen
below a SUSY violating threshold, the quartic couplings run independently
of the gauge couplings. If the stop squarks are heavy compared to the top
then

λ(mt) = λSUSY +
4Nc|yt|4

16π2
ln
(

m
t̃

mt

)
(9.24)
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∆(m2
h0) =

3
2π2

v2y4
t sin2β ln

(
m

t̃

mt

)
≈ (90 GeV)2

sin2 β
(9.25)

Note
d

dt
yt =

yt

16π2

[
6|yt|2 + |yb|2 −

16
3

g2
3 − 3g2

2 −
13
15

g2
1

]
(9.26)

With the additional assumption that yt does not blow up below the unifi-
cation scale we can put a lower bound on sinβ. With this bound and some
other smaller corrections one finds a one-loop radiative correction to the
Higgs mass bound:

mh0 < 130 GeV (9.27)

Adding new singlet fields gives:

mh0 < 150 GeV. (9.28)

9.4 Precision Electroweak Measurements

Below the EWSB scale we can have terms in the effective Lagrangian like

Leff ⊂ −
S gg′

16π
W 3

µνB
µν (9.29)

A heavy fermion (like the top) that gets a mass from EWSB contributes to
the W 3-B vacuum polarization Π3B

µν (p2) Since

TrT 3YL = 0 (9.30)

TrT 3YR = TrT 3Q =
1
2

(9.31)

Π3B
µν (p2) is proportional to p2gµν − pµpν)

Π3B
µν (p2) = m2

∫
dk Fµν(p, k,m) (9.32)

For m� mZ

d

dp2
Π3B

µν (p2)|p2=0 ∝
m2

m2
(9.33)

We see non-decoupling as m→∞, because m ∝ v.
For a superpartner mass we have msp(msoft, µ, v). In the limit µ, msoft →

∞ with v fixed we have msp →∞, so radiative corrections to S and related
parameters go like v2/msp → 0. Thus the superpartners decouple from
EWSB if they are sufficiently heavy.
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9.5 Problems with Flavor and CP

At generic points in the 105 dimensional parameter space there are flavor
changing and CP violating effects that contradict experiment. fopr example
lepton number can be violated

Γµ→eγ ≈ 4sin2θw

(
α2

4π

)3 m5
µ

M4
SUSY

(
∆m2

L

M2
SUSY

)2

(9.34)

Γµ =
(

α2

4π

)2 πm5
µ

64m4
W

(9.35)

Γµ→eγ

Γµ
≈ 4× 10−5

(
500GeV
MSUSY

)4
(

∆m2
L

M2
SUSY

)2

(9.36)

Experimentally this ratio is less than 5 ×10−11.
In the standard model the KK mixing amplitude is

MSM ≈ α2
2

m2
c

m4
W

sin2 θccos
2θc (9.37)

In the MSSM we have contributions like

MMSSM ≈ 4α2
3

(
∆m2

Q

M2
SUSY

)2
1

M2
SUSY

(9.38)

For MSM <MMSSM

(
∆m2

Q

M2
SUSY

)2

< 4× 10−3 MSUSY

500 GeV
(9.39)

A terms also introduce off-diagonal mixing. For example the electric dipole
moment of the d quark is appriximately

α3

4π

evcβadδ

M2
SUSY

(9.40)

while the electic dipole moment of the neutron is < 0.97× 10−25 e cm. so

cβadδ

(
500GeV

M2
SUSY

)2

< 5× 10−7 (9.41)
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For ad = yd

δ

(
500GeV

M2
SUSY

)2

< 10−2 (9.42)

To avoid these problems we need to be in “safe neighborhoods” of the
parameter space. Three safe neighborhoods that have been identified are

• 1) “Soft Breaking Universality” there are three conditions

m2
P ∝ I (9.43)

AP ∝ YP (9.44)

and no new non-trivial phases

• 2) “More Minimal Supersymmetric Model”[6] only require leading
quadratic divergences to cancel: t̃L, t̃R, b̃L, H̃u, H̃d, B̃,W̃ have masses
below 1 TeV, while first and second generation sparticle can be as
heavy as 20 TeV. However two-loop running below the heavy squark
threshold

dm2
t̃

dt
=

8g2
3

16π2
C2

[
3g2

3

16π2
m2

ũ,d̃
−M2

3

]
, (9.45)

may drive the top squark mass2 negative.

• 3) “Alignment” [7, 8]

m2
Q = Y∗

uY
T
u + Y∗

dY
T
d (9.46)

m2
u = Y†

uYu (9.47)

m2
d = Y†

dYd (9.48)
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